Since the radical is on the right side of the equation, switch the sides so it is on the left side of the equation.

To remove the radical on the left side of the equation, square both sides of the equation.

Multiply the exponents in .

Apply the power rule and multiply exponents, .

Cancel the common factor of .

Cancel the common factor.

Rewrite the expression.

Simplify.

Apply the product rule to .

Raise to the power of .

Subtract from both sides of the equation.

Factor the left side of the equation.

Factor out of .

Reorder the expression.

Move .

Reorder and .

Factor out of .

Factor out of .

Rewrite as .

Factor out of .

Factor out of .

Factor.

Factor by grouping.

For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .

Factor out of .

Rewrite as plus

Apply the distributive property.

Multiply by .

Factor out the greatest common factor from each group.

Group the first two terms and the last two terms.

Factor out the greatest common factor (GCF) from each group.

Factor the polynomial by factoring out the greatest common factor, .

Remove unnecessary parentheses.

Multiply each term in by

Multiply each term in by .

Simplify .

Simplify by multiplying through.

Apply the distributive property.

Multiply.

Multiply by .

Multiply by .

Expand using the FOIL Method.

Apply the distributive property.

Apply the distributive property.

Apply the distributive property.

Simplify and combine like terms.

Simplify each term.

Multiply by by adding the exponents.

Move .

Multiply by .

Multiply by .

Rewrite as .

Multiply by .

Subtract from .

Apply the distributive property.

Simplify.

Multiply by .

Multiply by .

Multiply by .

Multiply by .

Factor by grouping.

For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .

Factor out of .

Rewrite as plus

Apply the distributive property.

Multiply by .

Factor out the greatest common factor from each group.

Group the first two terms and the last two terms.

Factor out the greatest common factor (GCF) from each group.

Factor the polynomial by factoring out the greatest common factor, .

If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .

Set the first factor equal to and solve.

Set the first factor equal to .

Subtract from both sides of the equation.

Divide each term by and simplify.

Divide each term in by .

Cancel the common factor of .

Cancel the common factor.

Divide by .

Move the negative in front of the fraction.

Set the next factor equal to and solve.

Set the next factor equal to .

Add to both sides of the equation.

The final solution is all the values that make true.

Exclude the solutions that do not make true.

Solve for x 3x = square root of 35x+4