# Solve by Factoring x^(4/3)-5x^(2/3)+6=0

Rewrite as .
Let . Substitute for all occurrences of .
Factor using the AC method.
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Write the factored form using these integers.
Replace all occurrences of with .
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set the first factor equal to and solve.
Set the first factor equal to .
Add to both sides of the equation.
Raise each side of the equation to the power to eliminate the fractional exponent on the left side.
Solve the equation for .
Remove parentheses.
The complete solution is the result of both the positive and negative portions of the solution.
First, use the positive value of the to find the first solution.
Next, use the negative value of the to find the second solution.
The complete solution is the result of both the positive and negative portions of the solution.
Set the next factor equal to and solve.
Set the next factor equal to .
Add to both sides of the equation.
Raise each side of the equation to the power to eliminate the fractional exponent on the left side.
Solve the equation for .
Remove parentheses.
The complete solution is the result of both the positive and negative portions of the solution.
First, use the positive value of the to find the first solution.
Next, use the negative value of the to find the second solution.
The complete solution is the result of both the positive and negative portions of the solution.
The final solution is all the values that make true.
Exclude the solutions that do not make true.
Solve by Factoring x^(4/3)-5x^(2/3)+6=0

## Need help with MATH HOMEWORK

We can help your. Our mathematic problem solver answers your math homework questions with step-by-step explanations.

Need help with math? Try to Solve Algebra Math Problems here: https://elanyachtselection.com/

Scroll to top