# Find the Sum of the Series -2+4-8+16-32 This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by gives the next term. In other words, .
Geometric Sequence:
This is the form of a geometric sequence.
Substitute in the values of and .
Multiply by by adding the exponents.
Multiply by .
Raise to the power of .
Use the power rule to combine exponents.
Combine the opposite terms in .
Subtract from .
This is the formula to find the sum of the first terms of the geometric sequence. To evaluate it, find the values of and .
Replace the variables with the known values to find .
Simplify the numerator.
Anything raised to is .
Subtract from .
Simplify the expression.
Subtract from .
Divide by .
Multiply by .
Convert the fraction to a decimal.
Find the Sum of the Series -2+4-8+16-32

## Need help with MATH HOMEWORK

We can help your. Our mathematic problem solver answers your math homework questions with step-by-step explanations.

Need help with math? Try to Solve Algebra Math Problems here: https://elanyachtselection.com/

Scroll to top