Rewrite the equation as a function of .

By the Sum Rule, the derivative of with respect to is .

Evaluate .

Since is constant with respect to , the derivative of with respect to is .

Differentiate using the Power Rule which states that is where .

Multiply by .

Evaluate .

Since is constant with respect to , the derivative of with respect to is .

Differentiate using the Power Rule which states that is where .

Multiply by .

Differentiate using the Constant Rule.

Since is constant with respect to , the derivative of with respect to is .

Add and .

By the Sum Rule, the derivative of with respect to is .

Evaluate .

Since is constant with respect to , the derivative of with respect to is .

Differentiate using the Power Rule which states that is where .

Multiply by .

Differentiate using the Constant Rule.

Since is constant with respect to , the derivative of with respect to is .

Add and .

To find the local maximum and minimum values of the function, set the derivative equal to and solve.

Add to both sides of the equation.

Divide each term in by .

Cancel the common factor of .

Cancel the common factor.

Divide by .

Divide by .

Take the root of both sides of the to eliminate the exponent on the left side.

Simplify the right side of the equation.

Rewrite as .

Pull terms out from under the radical, assuming positive real numbers.

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the to find the first solution.

Next, use the negative value of the to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.

Multiply by .

is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.

is a local minimum

Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.

Multiply by .

is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.

is a local maximum

These are the local extrema for .

is a local minimum

is a local maximum

Find the Local Maxima and Minima y=2x^3-24x-5