Find the Local Maxima and Minima f(x)=2x^3-3x^2-36x+6

Math
Find the first derivative of the function.
Tap for more steps…
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Tap for more steps…
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Tap for more steps…
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Tap for more steps…
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Differentiate using the Constant Rule.
Tap for more steps…
Since is constant with respect to , the derivative of with respect to is .
Add and .
Find the second derivative of the function.
Tap for more steps…
By the Sum Rule, the derivative of with respect to is .
Evaluate .
Tap for more steps…
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Evaluate .
Tap for more steps…
Since is constant with respect to , the derivative of with respect to is .
Differentiate using the Power Rule which states that is where .
Multiply by .
Differentiate using the Constant Rule.
Tap for more steps…
Since is constant with respect to , the derivative of with respect to is .
Add and .
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Factor the left side of the equation.
Tap for more steps…
Factor out of .
Tap for more steps…
Factor out of .
Factor out of .
Factor out of .
Factor out of .
Factor out of .
Factor.
Tap for more steps…
Factor using the AC method.
Tap for more steps…
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Write the factored form using these integers.
Remove unnecessary parentheses.
Divide each term by and simplify.
Tap for more steps…
Divide each term in by .
Simplify .
Tap for more steps…
Cancel the common factor of .
Tap for more steps…
Cancel the common factor.
Divide by .
Expand using the FOIL Method.
Tap for more steps…
Apply the distributive property.
Apply the distributive property.
Apply the distributive property.
Simplify and combine like terms.
Tap for more steps…
Simplify each term.
Tap for more steps…
Multiply by .
Move to the left of .
Multiply by .
Subtract from .
Divide by .
Factor using the AC method.
Tap for more steps…
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Write the factored form using these integers.
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set the first factor equal to and solve.
Tap for more steps…
Set the first factor equal to .
Add to both sides of the equation.
Set the next factor equal to and solve.
Tap for more steps…
Set the next factor equal to .
Subtract from both sides of the equation.
The final solution is all the values that make true.
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Evaluate the second derivative.
Tap for more steps…
Multiply by .
Subtract from .
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Find the y-value when .
Tap for more steps…
Replace the variable with in the expression.
Simplify the result.
Tap for more steps…
Simplify each term.
Tap for more steps…
Raise to the power of .
Multiply by .
Raise to the power of .
Multiply by .
Multiply by .
Simplify by adding and subtracting.
Tap for more steps…
Subtract from .
Subtract from .
Add and .
The final answer is .
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Evaluate the second derivative.
Tap for more steps…
Multiply by .
Subtract from .
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Find the y-value when .
Tap for more steps…
Replace the variable with in the expression.
Simplify the result.
Tap for more steps…
Simplify each term.
Tap for more steps…
Raise to the power of .
Multiply by .
Raise to the power of .
Multiply by .
Multiply by .
Simplify by adding and subtracting.
Tap for more steps…
Subtract from .
Add and .
Add and .
The final answer is .
These are the local extrema for .
is a local minima
is a local maxima
Find the Local Maxima and Minima f(x)=2x^3-3x^2-36x+6


Need help with MATH HOMEWORK

We can help your. Our mathematic problem solver answers your math homework questions with step-by-step explanations.

Need help with math? Try to Solve Algebra Math Problems here: https://elanyachtselection.com/

Scroll to top